Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viral Immunol ; 37(3): 167-175, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574259

RESUMO

Zika virus (ZIKV) is an emerging flavivirus associated with several neurological diseases such as Guillain-Barré syndrome in adults and microcephaly in newborn children. Its distribution and mode of transmission (via Aedes aegypti and Aedes albopictus mosquitoes) collectively cause ZIKV to be a serious concern for global health. High genetic homology of flaviviruses and shared ecology is a hurdle for accurate detection. Distinguishing infections caused by different viruses based on serological recognition can be misleading as many anti-flavivirus monoclonal antibodies (mAbs) discovered to date are highly cross-reactive, especially those against the envelope (E) protein. To provide more specific research tools, we produced ZIKV E directed hybridoma cell lines and characterized two highly ZIKV-specific mAb clones (mAbs A11 and A42) against several members of the Flavivirus genus. Epitope mapping of mAb A11 revealed glycan loop specificity in Domain I of the ZIKV E protein. The development of two highly specific mAbs targeting the surface fusion protein of ZIKV presents a significant advancement in research capabilities as these can be employed as essential tools to enhance our understanding of ZIKV identification on infected cells ex vivo or in culture.


Assuntos
Aedes , Flavivirus , Infecção por Zika virus , Zika virus , Animais , Recém-Nascido , Humanos , Proteínas do Envelope Viral , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais
2.
J Pharm Sci ; 111(12): 3424-3434, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35609629

RESUMO

Zaire ebolavirus, Sudan ebolavirus, and Marburg marburgvirus are the filoviruses most commonly associated with human disease. Previously, we administered a three-dose regimen of trivalent vaccines comprising glycoprotein antigens from each virus in mice and non-human primates (NHPs). The vaccines, which contained a polysorbate 80-stabilized squalane-in-water emulsion adjuvant and were lyophilized from a solution containing trehalose, produced high antibody levels against all three filovirus antigens. Subsequently, single-vial formulations containing a higher concentration of adjuvant were generated for testing in NHPs, but these vaccines elicited lower neutralizing antibody titers in NHPs than previously tested formulations. In order to explain these results, in the current work we measured the size of adjuvant emulsion droplets and the peroxide levels present in the vaccines after lyophilization and reconstitution and tested the effects of these variables on the immune response in mice. Increases in squalane droplet sizes were observed when the ratio of adjuvant to trehalose was increased beyond a critical value, but antibody and neutralizing antibody titers in mice were independent of the droplet size. Higher levels of peroxides in the vaccines correlated with higher concentrations of adjuvant in the formulations, and higher peroxide levels were associated with increased levels of oxidative damage to glycoprotein antigens. Neutralizing titers in mice were inversely correlated with peroxide levels in the vaccines, but peroxide levels could be reduced by adding free methionine, resulting in retention of high neutralizing antibody titers. Overall, the results suggest that oxidation of glycoprotein antigens by peroxides in the polysorbate 80-stabilized squalane-in-water emulsion adjuvant, but not lyophilization-induced increases in adjuvant emulsion droplet size may have been responsible for the decreased neutralizing titers seen in formulations containing higher amounts of adjuvant.


Assuntos
Ebolavirus , Vacinas Virais , Camundongos , Animais , Anticorpos Neutralizantes , Polissorbatos , Trealose , Peróxidos , Emulsões , Anticorpos Antivirais , Adjuvantes Imunológicos/farmacologia , Glicoproteínas , Adjuvantes Farmacêuticos , Primatas , Água
3.
ACS Infect Dis ; 8(4): 825-840, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35263081

RESUMO

FDA-approved and emergency use-authorized vaccines using new mRNA and viral-vector technology are highly effective in preventing moderate to severe disease; however, information on their long-term efficacy and protective breadth against severe acute respiratory syndrome coronavirus 2 variants of concern (VOCs) is currently scarce. Here, we describe the durability and broad-spectrum VOC immunity of a prefusion-stabilized spike (S) protein adjuvanted with liquid or lyophilized CoVaccine HT in cynomolgus macaques. This recombinant subunit vaccine is highly immunogenic and induces robust spike-specific and broadly neutralizing antibody responses effective against circulating VOCs (B.1.351 [Beta], P.1 [Gamma], and B.1.617 [Delta]) for at least three months after the final boost. Protective efficacy and postexposure immunity were evaluated using a heterologous P.1 challenge nearly three months after the last immunization. Our results indicate that while immunization with both high and low S doses shorten and reduce viral loads in the upper and lower respiratory tract, a higher antigen dose is required to provide durable protection against disease as vaccine immunity wanes. Histologically, P.1 infection causes similar COVID-19-like lung pathology as seen with early pandemic isolates. Postchallenge IgG concentrations were restored to peak immunity levels, and vaccine-matched and cross-variant neutralizing antibodies were significantly elevated in immunized macaques indicating an efficient anamnestic response. Only low levels of P.1-specific neutralizing antibodies with limited breadth were observed in control (nonvaccinated but challenged) macaques, suggesting that natural infection may not prevent reinfection by other VOCs. Overall, these results demonstrate that a properly dosed and adjuvanted recombinant subunit vaccine can provide protective immunity against circulating VOCs for at least three months.


Assuntos
COVID-19 , SARS-CoV-2 , Adjuvantes Imunológicos , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Formação de Anticorpos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Macaca , Vacinas de Subunidades
4.
Artigo em Inglês | MEDLINE | ID: mdl-37034031

RESUMO

Lassa Fever (LF) is an acute viral hemorrhagic fever caused by Lassa virus (LASV) that is primarily transmitted through contact with wild rodents in West Africa. Although several advanced vaccine candidates are progressing through clinical trials, some effective vaccines are virally vectored and thus require a stringent cold-chain, making distribution to rural and resource-poor areas difficult. Recombinant subunit vaccines are advantageous in this aspect as they can be thermostabilized and deployed with minimal storage and transportation requirements. However, antigen dose and adjuvant formulation must be carefully selected to ensure both the appropriate humoral and cell-mediated immune responses are elicited. In this study, we examine the immunogenicity of a two-step immunoaffinity-purified recombinant LASV glycoprotein (GP) with five clinical- and preclinical-grade adjuvants. Swiss Webster mice immunized intramuscularly with 2 or 3 doses of each vaccine formulation showed complete seroconversion and maximal GP-specific antibody response after two immunizations. Formulations with GPI-0100, LiteVax, Montanide™ ISA 51, and Montanide™ ISA 720 induced both IgG1 and IgG2 antibodies suggesting a balanced Th1/Th2 response, whereas formulation of LASV GP with Alhydrogel elicited a IgG1-dominant response. Splenocytes secreting both Th1 and Th2 cytokines i.e., IFN-γ, TNF-α, IL-2, IL-4 and IL-5, were observed from mice receiving both antigen doses formulated with ISA 720, LiteVax and GPI-0100. However, robust, multifunctional T-cells were only detected in mice receiving a higher dose of LASV GP formulated with GPI-0100. Our results emphasize the importance of careful adjuvant selection and lay the immunological basis for a recombinant subunit protein LF vaccine formulation.

5.
Vaccine X ; : 100126, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34778744

RESUMO

The speed at which several COVID-19 vaccines went from conception to receiving FDA and EMA approval for emergency use is an achievement unrivaled in the history of vaccine development. Mass vaccination efforts using the highly effective vaccines are currently underway to generate sufficient herd immunity and reduce transmission of the SARS-CoV-2 virus. Despite the most advanced vaccine technology, global recipient coverage, especially in resource-poor areas remains a challenge as genetic drift in naïve population pockets threatens overall vaccine efficacy. In this study, we described the production of insect-cell expressed SARS-CoV-2 spike protein ectodomain constructs and examined their immunogenicity in mice. We demonstrated that, when formulated with CoVaccine HTTM adjuvant, an oil-in-water nanoemulsion compatible with lyophilization, our vaccine candidates elicit a broad-spectrum IgG response, high neutralizing antibody (NtAb) titers against SARS-CoV-2 prototype and variants of concern, specifically B.1.351 (Beta) and P.1. (Gamma), and an antigen-specific IFN-γ secreting response in outbred mice. Of note, different ectodomain constructs yielded variations in NtAb titers against the prototype strain and some VOC. Dose response experiments indicated that NtAb titers increased with antigen dose, but not adjuvant dose, and may be higher with a lower adjuvant dose. Our findings lay the immunological foundation for the development of a dry-thermostabilized vaccine that is deployable without refrigeration.

6.
bioRxiv ; 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33688645

RESUMO

The speed at which several COVID-19 vaccines went from conception to receiving FDA and EMA approval for emergency use is an achievement unrivaled in the history of vaccine development. Mass vaccination efforts using the highly effective vaccines are currently underway to generate sufficient herd immunity and reduce transmission of the SARS-CoV-2 virus. Despite the most advanced vaccine technology, global recipient coverage, especially in resource-poor areas remains a challenge as genetic drift in naïve population pockets threatens overall vaccine efficacy. In this study, we described the production of insect-cell expressed SARS-CoV-2 spike protein ectodomain and examined its immunogenicity in mice. We demonstrated that, when formulated with CoVaccine HT™adjuvant, an oil-in-water nanoemulsion compatible with lyophilization, our vaccine candidates elicit a broad-spectrum IgG response, high neutralizing antibody titers, and a robust, antigen-specific IFN-γ secreting response from immune splenocytes in outbred mice. Our findings lay the foundation for the development of a dry-thermostabilized vaccine that is deployable without refrigeration.

7.
Front Immunol ; 11: 599587, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193454

RESUMO

The current COVID-19 pandemic has claimed hundreds of thousands of lives and its causative agent, SARS-CoV-2, has infected millions, globally. The highly contagious nature of this respiratory virus has spurred massive global efforts to develop vaccines at record speeds. In addition to enhanced immunogen delivery, adjuvants may greatly impact protective efficacy of a SARS-CoV-2 vaccine. To investigate adjuvant suitability, we formulated protein subunit vaccines consisting of the recombinant S1 domain of SARS-CoV-2 Spike protein alone or in combination with either CoVaccine HT™ or Alhydrogel. CoVaccine HT™ induced high titres of antigen-binding IgG after a single dose, facilitated affinity maturation and class switching to a greater extent than Alhydrogel and elicited potent cell-mediated immunity as well as virus neutralizing antibody titres. Data presented here suggests that adjuvantation with CoVaccine HT™ can rapidly induce a comprehensive and protective immune response to SARS-CoV-2.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Hidróxido de Alumínio/administração & dosagem , Hidróxido de Alumínio/imunologia , Animais , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/genética , Vacinas contra COVID-19/imunologia , Feminino , Humanos , Imunidade Celular , Imunidade Humoral , Imunização , Imunoglobulina G/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/administração & dosagem , Glicoproteína da Espícula de Coronavírus/genética , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
8.
bioRxiv ; 2020 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-32743582

RESUMO

The current COVID-19 pandemic has claimed hundreds of thousands of lives and its causative agent, SARS-CoV-2, has infected millions, globally. The highly contagious nature of this respiratory virus has spurred massive global efforts to develop vaccines at record speeds. In addition to enhanced immunogen delivery, adjuvants may greatly impact protective efficacy of a SARS-CoV-2 vaccine. To investigate adjuvant suitability, we formulated protein subunit vaccines consisting of the recombinant S1 domain of SARS-CoV-2 Spike protein alone or in combination with either CoVaccine HT™ or Alhydrogel. CoVaccine HT™ induced high titres of antigen-binding IgG after a single dose, facilitated affinity maturation and class switching to a greater extent than Alhydrogel and elicited potent cell-mediated immunity as well as virus neutralising antibody titres. Data presented here suggests that adjuvantation with CoVaccine HT™ can rapidly induce a comprehensive and protective immune response to SARS-CoV-2.

9.
mSphere ; 3(1)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29359186

RESUMO

Following the 2015 Zika virus (ZIKV) outbreaks in the South Pacific, Caribbean, and Americas, ZIKV has emerged as a serious threat due to its association with infantile microcephaly and other neurologic disorders. Despite an international effort to develop a safe and effective vaccine to combat congenital Zika syndrome and ZIKV infection, only DNA and mRNA vaccines encoding the precursor membrane (prM) and envelope (E) proteins, an inactivated-ZIKV vaccine, and a measles virus-based ZIKV vaccine are currently in phase I or II (prM/E DNA) clinical trials. A ZIKV vaccine based on a nonreplicating, recombinant subunit platform offers a higher safety profile than other ZIKV vaccine candidates but is still highly immunogenic, inducing high virus-neutralizing antibody titers. Here, we describe the production and purification of Drosophila melanogaster S2 insect cell-derived, soluble ZIKV E protein and evaluate its immunogenicity and efficacy in three different mouse strains. As expected, significant virus-specific antibody titers were observed when using formulations containing clinically relevant adjuvants. Immunized mice challenged with live virus demonstrate inhibition of virus replication. Importantly, plaque reduction neutralization tests (PRNTs) indicate the high-titer production of neutralizing antibodies, a correlate of protection in the defense against ZIKV infection. ZIKV challenge of immunocompetent mice led to full protection against viremia with two doses of adjuvanted vaccine candidates. These data demonstrate a proof of concept and establish recombinant subunit immunogens as an effective vaccine candidate against ZIKV infection. IMPORTANCE The recent outbreaks of Zika virus (ZIKV) infection in French Polynesia, the Caribbean, and the Americas have highlighted the severe neuropathological sequelae that such an infection may cause. The development of a safe, effective ZIKV vaccine is critical for several reasons: (i) the difficulty in diagnosing an active infection due to common nonspecific symptoms, (ii) the lack of a specific antiviral therapy, and (iii) the potentially devastating pathological effects of in utero infection. Moreover, a vaccine with an excellent safety profile, such as a nonreplicating, noninfectious vaccine, would be ideal for high-risk people (e.g., pregnant women, immunocompromised patients, and elderly individuals). This report describes the development of a recombinant subunit protein vaccine candidate derived from stably transformed insect cells expressing the ZIKV envelope protein in vitro, the primary antigen to which effective virus-neutralizing antibodies are engendered by immunized animals for several other flaviviruses; the vaccine candidate elicits effective virus-neutralizing antibodies against ZIKV and provides protection against ZIKV infection in mice.

10.
Front Microbiol ; 8: 1571, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28861075

RESUMO

Ebola virus (EBOV), a member of the Filoviridae family, causes the most severe form of viral hemorrhagic fever. Although no FDA licensed vaccine or treatment against Ebola virus disease (EVD) is currently available, Ebola virus glycoprotein (GP) is the major antigen used in all candidate Ebola vaccines. Recent reports of protection as quickly as within 6 days of administration of the rVSV-based vaccine expressing EBOV GP before robust humoral responses were generated suggests that the innate immune responses elicited early after vaccination may contribute to the protection. However, the innate immune responses induced by EBOV GP in the absence of viral vectors or adjuvants have not been fully characterized in vivo. Our recent studies demonstrated that immunization with highly purified recombinant GP in the absence of adjuvants induced a robust IgG response and partial protection against EBOV infection suggesting that GP alone can induce protective immunity. In this study we investigated the early immune response to purified EBOV GP alone in vitro and in vivo. We show that GP was efficiently internalized by antigen presenting cells and subsequently induced production of key inflammatory cytokines. In vivo, immunization of mice with EBOV GP triggered the production of key Th1 and Th2 innate immune cytokines and chemokines, which directly governed the recruitment of CD11b+ macrophages and CD11c+ dendritic cells to the draining lymph nodes (DLNs). Pre-treatment of mice with a TLR4 antagonist inhibited GP-induced cytokine production and recruitment of immune cells to the DLN. EBOV GP also upregulated the expression of costimulatory molecules in bone marrow derived macrophages suggesting its ability to enhance APC stimulatory capacity, which is critical for the induction of effective antigen-specific adaptive immunity. Collectively, these results provide the first in vivo evidence that early innate immune responses to EBOV GP are mediated via the TLR4 pathway and are able to modulate the innate-adaptive interface. These mechanistic insights into the adjuvant-like property of EBOV GP may help to develop a better understanding of how optimal prophylactic efficacy of EBOV vaccines can be achieved as well as further explore the potential post-exposure use of vaccines to prevent filoviral disease.

13.
Nat Immunol ; 16(2): 170-177, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25501631

RESUMO

Dengue is a rapidly emerging, mosquito-borne viral infection, with an estimated 400 million infections occurring annually. To gain insight into dengue immunity, we characterized 145 human monoclonal antibodies (mAbs) and identified a previously unknown epitope, the envelope dimer epitope (EDE), that bridges two envelope protein subunits that make up the 90 repeating dimers on the mature virion. The mAbs to EDE were broadly reactive across the dengue serocomplex and fully neutralized virus produced in either insect cells or primary human cells, with 50% neutralization in the low picomolar range. Our results provide a path to a subunit vaccine against dengue virus and have implications for the design and monitoring of future vaccine trials in which the induction of antibody to the EDE should be prioritized.


Assuntos
Anticorpos Neutralizantes/isolamento & purificação , Vírus da Dengue/imunologia , Dengue/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Monoclonais/sangue , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/sangue , Bioensaio , Linhagem Celular , Dengue/sangue , Ensaio de Imunoadsorção Enzimática , Humanos , Immunoblotting , Proteínas do Envelope Viral/metabolismo
14.
PLoS Pathog ; 10(10): e1004386, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25275316

RESUMO

Dengue viruses (DENV) are mosquito-borne flaviviruses of global importance. DENV exist as four serotypes, DENV1-DENV4. Following a primary infection, individuals produce DENV-specific antibodies that bind only to the serotype of infection and other antibodies that cross-react with two or more serotypes. People exposed to a secondary DENV infection with another serotype are at greater risk of developing more severe forms of dengue disease. The increased risk of severe dengue in people experiencing repeat DENV infections appear to be due, at least in part, to the ability of pre-existing serotype cross-reactive antibodies to form virus-antibody complexes that can productively infect Fcγ receptor-bearing target cells. While the theory of antibody-dependent enhancement (ADE) is supported by several human and small animal model studies, the specific viral antigens and epitopes recognized by enhancing human antibodies after natural infections have not been fully defined. We used antibody-depletion techniques to remove DENV-specific antibody sub-populations from primary DENV-immune human sera. The effects of removing specific antibody populations on ADE were tested both in vitro using K562 cells and in vivo using the AG129 mouse model. Removal of serotype cross-reactive antibodies ablated enhancement of heterotypic virus infection in vitro and antibody-enhanced mortality in vivo. Further depletion studies using recombinant viral antigens showed that although the removal of DENV E-specific antibodies using recombinant E (rE) protein resulted in a partial reduction in DENV enhancement, there was a significant residual enhancement remaining. Competition ADE studies using prM-specific Fab fragments in human immune sera showed that both rE-specific and prM-specific antibodies in primary DENV-immune sera significantly contribute to enhancement of heterotypic DENV infection in vitro. Identification of the targets of DENV-enhancing antibodies should contribute to the development of safe, non-enhancing vaccines against dengue.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Facilitadores/imunologia , Reações Cruzadas/imunologia , Vírus da Dengue/imunologia , Soros Imunes/imunologia , Animais , Epitopos/imunologia , Humanos , Camundongos , Testes de Neutralização/métodos
15.
J Virol ; 87(23): 12562-75, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24027331

RESUMO

The envelope (E) protein of dengue virus (DENV) is the major target of neutralizing antibodies (Abs) and vaccine development. Previous studies of human dengue-immune sera reported that a significant proportion of anti-E Abs, known as group-reactive (GR) Abs, were cross-reactive to all four DENV serotypes and to one or more other flaviviruses. Based on studies of mouse anti-E monoclonal antibodies (MAbs), GR MAbs were nonneutralizing or weakly neutralizing compared with type-specific MAbs; a GR response was thus not regarded as important for vaccine strategy. We investigated the epitopes, binding avidities, and neutralization potencies of 32 human GR anti-E MAbs. In addition to fusion loop (FL) residues in E protein domain II, human GR MAbs recognized an epitope involving both FL and bc loop residues in domain II. The neutralization potencies and binding avidities of GR MAbs derived from secondary DENV infection were stronger than those derived from primary infection. GR MAbs derived from primary DENV infection primarily blocked attachment, whereas those derived from secondary infection blocked DENV postattachment. Analysis of the repertoire of anti-E MAbs derived from patients with primary DENV infection revealed that the majority were GR, low-avidity, and weakly neutralizing MAbs, whereas those from secondary infection were primarily GR, high-avidity, and potently neutralizing MAbs. Our findings suggest that the weakly neutralizing GR anti-E Abs generated from primary DENV infection become potently neutralizing MAbs against the four serotypes after secondary infection. The observation that the dengue immune status of the host affects the quality of the cross-reactive Abs generated has implications for new strategies for DENV vaccination.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vírus da Dengue/imunologia , Dengue/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Reações Cruzadas , Dengue/virologia , Vírus da Dengue/classificação , Epitopos/imunologia , Feminino , Humanos , Masculino , Camundongos , Proteínas do Envelope Viral/química
16.
PLoS Negl Trop Dis ; 7(9): e2451, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24069496

RESUMO

Dengue virus (DENV) is the leading cause of arboviral diseases in humans worldwide. The envelope (E) protein of DENV is the major target of neutralizing antibodies (Abs). Previous studies have shown that a significant proportion of anti-E Abs in human serum after DENV infection recognize the highly conserved fusion loop (FL) of E protein. The role of anti-FL Abs in protection against subsequent DENV infection versus pathogenesis remains unclear. A human anti-E monoclonal Ab was used as a standard in a virion-capture ELISA to measure the concentration of anti-E Abs, [anti-E Abs], in dengue-immune sera from Nicaraguan patients collected 3, 6, 12 and 18 months post-infection. The proportion of anti-FL Abs was determined by capture ELISA using virus-like particles containing mutations in FL, and the concentration of anti-FL Abs, [anti-FL Abs], was calculated. Neutralization titers (NT50) were determined using a previously described flow cytometry-based assay. Analysis of sequential samples from 10 dengue patients revealed [anti-E Abs] and [anti-FL Abs] were higher in secondary than in primary DENV infections. While [anti-FL Abs] did not correlate with NT50 against the current infecting serotype, it correlated with NT50 against the serotypes to which patients had likely not yet been exposed ("non-exposed" serotypes) in 14 secondary DENV3 and 15 secondary DENV2 cases. These findings demonstrate the kinetics of anti-FL Abs and provide evidence that anti-FL Abs play a protective role against "non-exposed" serotypes after secondary DENV infection.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Reações Cruzadas , Vírus da Dengue/imunologia , Dengue/imunologia , Proteínas Virais de Fusão/imunologia , Adolescente , Criança , Pré-Escolar , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Humanos , Lactente , Masculino , Testes de Neutralização , Nicarágua
17.
PLoS Negl Trop Dis ; 6(1): e1447, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22235356

RESUMO

BACKGROUND: The envelope (E) protein of dengue virus (DENV) is the major target of neutralizing antibodies and vaccine development. While previous studies on domain III or domain I/II alone have reported several epitopes of monoclonal antibodies (mAbs) against DENV E protein, the possibility of interdomain epitopes and the relationship between epitopes and neutralizing potency remain largely unexplored. METHODOLOGY/PRINCIPAL FINDINGS: We developed a dot blot assay by using 67 alanine mutants of predicted surface-exposed E residues as a systematic approach to identify epitopes recognized by mAbs and polyclonal sera, and confirmed our findings using a capture-ELISA assay. Of the 12 mouse mAbs tested, three recognized a novel epitope involving residues (Q211, D215, P217) at the central interface of domain II, and three recognized residues at both domain III and the lateral ridge of domain II, suggesting a more frequent presence of interdomain epitopes than previously appreciated. Compared with mAbs generated by traditional protocols, the potent neutralizing mAbs generated by a new protocol recognized multiple residues in A strand or residues in C strand/CC' loop of DENV2 and DENV1, and multiple residues in BC loop and residues in DE loop, EF loop/F strand or G strand of DENV1. The predominant epitopes of anti-E antibodies in polyclonal sera were found to include both fusion loop and non-fusion residues in the same or adjacent monomer. CONCLUSIONS/SIGNIFICANCE: Our analyses have implications for epitope-specific diagnostics and epitope-based dengue vaccines. This high throughput method has tremendous application for mapping both intra and interdomain epitopes recognized by human mAbs and polyclonal sera, which would further our understanding of humoral immune responses to DENV at the epitope level.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Vírus da Dengue/imunologia , Epitopos/imunologia , Proteínas do Envelope Viral/imunologia , Anticorpos Neutralizantes , Ensaio de Imunoadsorção Enzimática , Epitopos/genética , Humanos , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/imunologia , Proteínas do Envelope Viral/genética
18.
PLoS One ; 7(12): e52600, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23300717

RESUMO

BACKGROUND: The envelope (E) protein of dengue virus (DENV) is the major immunogen for dengue vaccine development. At the C-terminus are two α-helices (EH1 and EH2) and two transmembrane domains (ET1 and ET2). After synthesis, E protein forms a heterodimer with the precursor membrane (prM) protein, which has been shown as a chaperone for E protein and could prevent premature fusion of E protein during maturation. Recent reports of enhancement of DENV infectivity by anti-prM monoclonal antibodies (mAbs) suggest the presence of prM protein in dengue vaccine is potentially harmful. A better understanding of prM-E interaction and its effect on recognition of E and prM proteins by different antibodies would provide important information for future design of safe and effective subunit dengue vaccines. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we examined a series of C-terminal truncation constructs of DENV4 prME, E and prM. In the absence of E protein, prM protein expressed poorly. In the presence of E protein, the expression of prM protein increased in a dose-dependent manner. Radioimmunoprecipitation, sucrose gradient sedimentation and pulse-chase experiments revealed ET1 and EH2 were involved in prM-E interaction and EH2 in maintaining the stability of prM protein. Dot blot assay revealed E protein affected the recognition of prM protein by an anti-prM mAb; truncation of EH2 or EH1 affected the recognition of E protein by several anti-E mAbs, which was further verified by capture ELISA. The E protein ectodomain alone can be recognized well by all anti-E mAbs tested. CONCLUSIONS/SIGNIFICANCE: A C-terminal domain (EH2) of DENV E protein can affect the expression and stability of its chaperone prM protein. These findings not only add to our understanding of the interaction between prM and E proteins, but also suggest the ectodomain of E protein alone could be a potential subunit immunogen without inducing anti-prM response.


Assuntos
Vírus da Dengue/metabolismo , Regulação Viral da Expressão Gênica , Proteínas do Envelope Viral/metabolismo , Animais , Anticorpos Monoclonais Murinos/química , Anticorpos Antivirais/sangue , Anticorpos Antivirais/química , Afinidade de Anticorpos , Dengue/sangue , Dengue/imunologia , Vírus da Dengue/genética , Vírus da Dengue/imunologia , Expressão Gênica , Células HEK293 , Humanos , Camundongos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Estrutura Secundária de Proteína , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
19.
J Virol ; 82(13): 6631-43, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18448542

RESUMO

The antibody response to the envelope (E) glycoprotein of dengue virus (DENV) is known to play a critical role in both protection from and enhancement of disease, especially after primary infection. However, the relative amounts of homologous and heterologous anti-E antibodies and their epitopes remain unclear. In this study, we examined the antibody responses to E protein as well as to precursor membrane (PrM), capsid, and nonstructural protein 1 (NS1) of four serotypes of DENV by Western blot analysis of DENV serotype 2-infected patients with different disease severity and immune status during an outbreak in southern Taiwan in 2002. Based on the early-convalescent-phase sera tested, the rates of antibody responses to PrM and NS1 proteins were significantly higher in patients with secondary infection than in those with primary infection. A blocking experiment and neutralization assay showed that more than 90% of anti-E antibodies after primary infection were cross-reactive and nonneutralizing against heterologous serotypes and that only a minor proportion were type specific, which may account for the type-specific neutralization activity. Moreover, the E-binding activity in sera of 10 patients with primary infection was greatly reduced by amino acid replacements of three fusion loop residues, tryptophan at position 101, leucine at position 107, and phenylalanine at position 108, but not by replacements of those outside the fusion loop of domain II, suggesting that the predominantly cross-reactive anti-E antibodies recognized epitopes involving the highly conserved residues at the fusion loop of domain II. These findings have implications for our understanding of the pathogenesis of dengue and for the future design of subunit vaccine against DENV as well.


Assuntos
Anticorpos Antivirais/imunologia , Reações Cruzadas/imunologia , Vírus da Dengue/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Anticorpos Antivirais/sangue , Western Blotting , Linhagem Celular , Primers do DNA/genética , Ensaio de Imunoadsorção Enzimática , Epitopos/genética , Humanos , Mutação de Sentido Incorreto/genética , Testes de Neutralização , Estrutura Terciária de Proteína , Taiwan
20.
J Biomed Sci ; 15(1): 15-27, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17768670

RESUMO

While virus-like particles (VLPs) containing subgenomic replicons, which can transduce replicons into target cells efficiently for studying viral replication and vectors of gene therapy and vaccine, have been established for several flaviviruses, none has been reported for the four serotypes of dengue virus, the causal agent of the most important arboviral diseases in this century. In this study, we successfully established a cell line stably expressing the precursor membrane/envelope (PrM/E) proteins of dengue virus type 2 (DENV2), which can package a DENV2 replicon with deletion of PrM/E genes and produce single-round infectious VLPs. Moreover, it can package a similar replicon of different serotype, dengue virus type 4, and produce infectious chimeric VLPs. To our knowledge, this study reports for the first time replicon-containing VLPs of dengue virus. Moreover, this convenient system has potential as a valuable tool to study encapsidation of dengue virus and to develop novel chimeric VLPs containing dengue virus replicon as vaccine in the future.


Assuntos
Vírus da Dengue/genética , Sequência de Bases , Linhagem Celular , Quimera/genética , Primers do DNA/genética , DNA Viral/genética , Vírus da Dengue/classificação , Vírus da Dengue/fisiologia , Expressão Gênica , Genes Virais , Humanos , Replicon , Proteínas do Envelope Viral/genética , Proteínas da Matriz Viral/genética , Vírion/genética , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...